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I .  Phys. A: Math. Gen. 20 (1987) L637-L640. Printed in the U K  

LETTER TO THE EDITOR 

Monte Carlo simulations of random walks and surfaces in 
parallel 

E J Janse van Rensburg 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge CB3 9EW, U K  

Received 2 March 1987 

Abstract. The theory of Monte Carlo simulation of random geometric objects such as 
random walks and random surfaces is considered on a sequential and a parallel computer. 
The partition functions generated for simple Monte Carlo rules are derived and the 
difference between sequential and parallel computing is discussed for the case of random 
walks with fixed endpoints or for random loops. The implications for random surface 
calculations in parallel is considerd in short. 

The increasing availability of parallel computers in the physicist’s armoury has made 
big improvements possible in the statistical simulation of physical systems. The Monte 
Carlo ( MC) (Metropolis et al 1953) approach in particular has been applied extensively 
to all kinds of problems in many different fields (Binder 1979). In this letter we consider 
the specific application of this process to the restricted problem of generating ensembles 
of geometric objects like random walks and loops (Berg and Foester 1981, Aragao de 
Carvalho et a1 1983), random surfaces (Jurkiewicz et a1 1986, Billoire and David 1986) 
and in surface physics (see, e.g., Binder 1979 and references therein). 

As an illustration we consider the generation of Brownian random walks with fixed 
endpoints on a hypercubical lattice using a link-shifting scheme. This problem was 
considered first by Berg and Foester (1981) using a sequential machine and by Janse 
van Rensburg (1986) using a parallel computer. The elementary MC process is defined 
in figure 1. A link is selected at random and shifted perpendicular to itself in any of 
2(d-1)  directions to generate a new configuration. To preserve the condition of 
detailed balance it is clear that transitions like that in figure 2 must be forbidden. It 
is easily seen that this process connects the space of random walk configurations. 

Figure 1. The elementary process defined for the Monte Carlo algorithm. I f  the link 6 is 
equal to - A  or p, the formed spike is deleted. 
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Figure 2. Under the elementary process defined in figurre 1 we have not got detailed 
balance. Transitions such as this must be forbidden because they are not reversible under 
the rule in figure 1. 

The partition function for Brownian random walks is typically of the form 
z - c e-blwl 

B -  
W : X - y  

where w is a random walk connecting the lattice sites x and y with Iw1 links and b is 
the inverse temperature. This equation suggests a MC transition probability 

Ensembles of random walks are then generated by applying the elementary process 
and accepting new configurations into the ensemble with the rule ( 2 ) .  

When this algorithm is implemented on a sequential computer, an ensemble P of 
n random walks are generated as a sequence ( U ,  + w 2  + . . . U “ ) .  The apriori probability 
of selecting a link in configuration wi is l / lwi l  and the probability of a transition 
mi + wi+l is thus given by 

(3)  
1 

P(wi  + wi+l) =- P(lwil+ Iwi+ll). 
Iwil 

The condition of detailed balance is then easily shown to be 

It is thus obvious that the partition function generated by this process is given by (Berg 
and Foester 1981) 

This problem is overcome by Aragao de Carvalho et a1 (1983) by modifying the 
transition probabilities in equation (2) to ( l / lw l )P( lw l+  lw’ l ) .  This modification can 
then be shown to generate the correct partition function but it slows the process down 
near the critical point of the theory where the lengths of the random walks become 
very long. 

The implementation of the algorithm on a parallel computer with P independent 
processors is identical to that of the sequential computer except that, for practical 
reasons, the apriori probability that a link on any of the P walks is selected is l /( lwlmax) 
where Jwlmax is the longest walk in the ensemble P. The ensemble of random walks is 
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then updated many times. We show that it converges to a Boltzmann distribution. 
Suppose that we have updated the ensemble m times and call the new ensemble P'. Let 

where IwI,,,,,,, is the longest walk in the configuration at the ith update. Then it is 
clear that 

where Pc(lwl-+Iw'I) is the product of the elementary probabilities (2) along every 
configuration in the m updates. Since X is the same for all members of the ensemble, 
it is easy to show that the walks in the ensemble are distributed over the correct 
partition function (1). This approach has as a main advantage over the sequential 
method that longer walks are not overweighted, and one may thus explore the critical 
region more accurately without the problem that the walks may become so long that 
they are statistically uncontrolable. As a small example that the parallel MC program 
generates the correct partition function ( l ) ,  the algorithm was coded into the ICL DAP, 

a machine with 4096 parallel elements, to generate an ensemble of self-avoiding random 
walks in two dimensions. If the correct distribution is obtained over the random walks, 
we can predict the number of states with lengths 3, 5 ,  7, 9, 13, etc, statistically and 
compare the results to known values. The results are listed in table 1. The exact values 
for the numbers of self-avoiding random walks were obtained from the results of Janse 
van Rensburg (1986) and the number of walks of length 9 (128) connecting two 
neighbouring sites was enumerated explicitly. 

Table 1. Numbers of self-avoiding random walks connecting ( O , O ,  0) to ( 1 , O .  0) .  The M C  

process on the ICL DAP was used to enumerate self-avoiding walks joining the origin with 
(1,O) in two dimensions. The comparison to predicted numbers indicates that the parallel 
program does indeed generate the correct partition function ( 1 )  for self-avoiding random 
walks. The measurements were made over 12 ensembles of 4096 random walks in parallel 
(i.e. 49 152 walks) and the statistical error was calculated in the usual way. 

Length Theoretical Measured 

1 1 
3 2 
5 6 
7 26 
9 128 

11 - 

~ 

1 
1.92*0.29 
5.7010.49 

26.91 12.22 
135* 11 
739 * 77 

This same problem may haunt the generation of random surfaces. Consider, for 
example, the model discussed by Jurkiewicz et a1 (1986). A random surface is con- 
sidered in tetrahedral space. New configurations are generated by the addition (or 
deletion) of tetrahedra. This model is of course closely related to studies of crystal 
growth or dissolution in surface physics (Binder 1979). In all these studies the a priori 
probability of selecting a site for the addition or deletion of a tetrahedron or a molecule 
is inversely proportional to the surface area, and care must therefore be taken to ensure 
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that the correct partition function is generated if the goal is to generate an ensemble 
of surfaces or crystals to calculate statistical averages (for example the average crystal 
size or the average surface area of crystals in solution for a given surface-solvent 
interaction). 

The author wants to express his deepest gratitude to the Bradlow Foundation for 
financial support. 
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